Задачи на тему: "Наклонная призма" (Вариант 1)

40. Боковое ребро наклонной призмы равно 12 см и образует с плоскостью основания угол 30°. Найти длину высоты призмы. Иллюстрация...

41. В основании призмы лежит трапеция. Через середины непараллельных сторон верхнего и нижнего оснований призмы проведена плоскость. Площадь части этой плоскости, расположенной внутри призмы, равна 24 см2, а площадь грани, содержащей большее основание трапеции, — 36 см2. Найти площадь грани призмы, содержащей меньшее основание трапеции. Иллюстрация...

42. В основании наклонной призмы АВСА1В1С1 лежит равнобедренный треугольник ABC, АВ = АС = 10 см, ВС = 16 см. Боковое ребро призмы АА1 образует с плоскостью основания угол 30°, а ортогональная проекция вершины А1 верхнего основания на плоскость нижнего — середина отрезка ВС. Найти площадь грани ВВ1С1С. Иллюстрация...

43. Расстояния между боковыми ребрами наклонной треугольной призмы равны 4 см, 5 см и 7 см, а площадь ее боковой поверхности — 48 см2. Найти длину бокового ребра призмы. Иллюстрация...

44. В наклонной треугольной призме две боковые грани взаимно перпендикулярны. Их общее боковое ребро равно 12 см и удалено от двух других боковых ребер на 8 см и 15 см. Найти площадь боковой поверхности призмы. Иллюстрация...

45. В основании призмы лежит правильный треугольник со стороной 6 см. Одна из боковых граней — квадрат, а две другие — параллелограммы с острым углом 30°. Найти площадь полной поверхности призмы. Иллюстрация...

46. Каждое ребро наклонной треугольной призмы равно 8 см, а одно из боковых ребер образует со смежными сторонами основания углы по 45°. Найти площадь полной поверхности призмы. Иллюстрация...

47. В основании призмы лежит прямоугольник со сторонами 6 см и 8 см. Две боковые грани, содержащие меньшие стороны основания, перпендикулярны плоскости основания, а две других образуют с ней угол 30°. Найти боковое ребро призмы, если площадь ее полной поверхности равна 316 см2. Иллюстрация...