Задачи на тему: "Объем прямой призмы" (Вариант 2)

275. В основании прямой призмы лежит ромб с диагоналями 12 см и 16 см. Диагональ боковой грани образует с плоскостью основания угол 45°. Найти объем призмы. Иллюстрация...

276. Каждое ребро правильной треугольной призмы равно 2 см. Найти объем призмы. Иллюстрация...

277. В правильной шестиугольной призме боковая грань — квадрат, диагональ которого равна 6 см. Найти объем призмы. Иллюстрация...

278. В правильной четырехугольной призме диагональ равна 8 см, а диагональ боковой грани — 6 см. Найти объем призмы. Иллюстрация...

279. В правильной четырехугольной призме диагональ равна d и образует с плоскостью основания угол . Найти объем призмы. Иллюстрация...

280. В основании призмы лежит треугольник со сторонами 8 см, 13 см и 15 см. Диагональ боковой грани, содержащей меньшую сторону основания, равна 6 см. Найти объем призмы. Иллюстрация...

281. В основании прямой призмы лежит прямоугольный треугольник, тангенс одного из углов которого равен двум. Высота призмы вдвое больше меньшего из катетов основания, а объем призмы равен 54 см3. Найти площадь боковой поверхности призмы. Иллюстрация...

282. В основании прямой призмы лежит прямоугольный треугольник, один из катетов которого равен а. Через второй катет и противоположную ему вершину верхнего основания проведено сечение, площадь которого равна S. Найти объем призмы, если ее высота равна Н. Иллюстрация...

283. В основании прямой призмы лежит равнобокая трапеция, боковая сторона которой равна 5 см, а диаметр вписанной окружности — 3 см. Диагональ призмы образует с плоскостью основания угол 30°. Найти объем призмы. Иллюстрация...

284. Найти отношение объемов правильных треугольной и четырехугольной призм, если они имеют равные высоты и площади боковых поверхностей. Иллюстрация...

285. Через одну из вершин нижнего основания прямой четырехугольной призмы и диагонали боковых граней, выходящие из этой вершины, проведено сечение, площадь которого S и которое образует с плоскостью нижнего основания угол . Найти объем призмы, если ее высота равна Н. Иллюстрация...

286. Объем правильной четырехугольной призмы равен V. Найти объем призмы, вершины которой — середины сторон основания данной призмы. Иллюстрация...

287. Боковые грани правильной шестиугольной призмы — квадраты, а меньшая диагональ основания равна d. Найти объем призмы. Иллюстрация...

288. В основании прямой призмы лежит прямоугольный треугольник, один из катетов которого равен b, а противоположный ему угол — . Диагональ боковой грани, содержащей другой катет, образует с гранью, содержащей гипотенузу, угол . Найти объем призмы. Иллюстрация...

289. В основании прямой призмы лежит равнобокая трапеция, основания которой равны а и b (а > b), а площадь ее S. Через точку, делящую боковое ребро в отношении 3 : 1, считая от верхнего основания, и противоположное этому ребру меньшее основание трапеции проведено сечение, образующее с нижним основанием угол . Найти объем призмы. Иллюстрация...

290. В основании прямой призмы ABCDA1B1C1D1 лежит параллелограмм ABCD, АС = a, BAC = , BCA = . Площадь боковой грани ВВ1С1С равна S. Найти объем призмы. Иллюстрация...

291. В правильной треугольной призме диагональ боковой грани равна 25 см, а площадь боковой поверхности — 504 см2. Найти объем призмы. Иллюстрация...

292. Площадь основания правильной треугольной призмы равна 25 см2. Высота основания призмы в четыре раза меньше диагонали боковой грани. Найти объем призмы. Иллюстрация...

293. Периметры двух неравных граней правильной шести-угольной призмы равны М и N. Найти объем призмы. Иллюстрация...

294. Площадь основания и площадь боковой поверхности правильной треугольной призмы соответственно равны S1 и S2. Найти объем призмы. Иллюстрация...

295. Периметр основания прямой треугольной призмы равен 30 см, а площади боковых граней — 15 см2, 36 см2 и 39 см2. Найти объем призмы. Иллюстрация...

296. В правильную четырехугольную призму вписан шар радиуса r. Найти объем призмы. Иллюстрация...

297. Сторона основания правильной треугольной призмы равна 12 см. Эта призма вписана в сферу, радиус которой 7 см. Найти объем призмы. Иллюстрация...